Site Tools


duke_notes

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
duke_notes [2025/11/10 20:36] adminduke_notes [2025/11/17 21:46] (current) admin
Line 1: Line 1:
 [[https://stats.libretexts.org/Bookshelves/Introductory_Statistics/OpenIntro_Statistics_(Diez_et_al)./06%3A_Inference_for_Categorical_Data | Inference for Categorical Variables]] [[https://stats.libretexts.org/Bookshelves/Introductory_Statistics/OpenIntro_Statistics_(Diez_et_al)./06%3A_Inference_for_Categorical_Data | Inference for Categorical Variables]]
  
-  * Parametric One-Sample Inference of Categorical Variables +===== General Tips ===== 
-    * one-sample proportion test + 
-    * $\Chi^2$ goodness of fit test +  if you can, pick a continuous outcome over a binary outcome 
 +    * Why? For a binary outcome, you'll need a much larger sample size. Continuous outcomes also allow more precision. 
 +  * logistic regressions stink! 
 + 
 +logistic regression = linear model for the log-odds of the outcome 
 + 
 +=== analyzing relationship between categorical outcome and a continuous covariate === 
 + 
 +===effect modification vs confounding=== 
 + 
 +if we don't take effect modification into account, we get an over-generalized estimate of the relationship between the outcome and the exposure for the entire co-hort 
 + 
 +  * Breslow-Day Test examines if evidence of a differential association between two variables across the level of a third variable 
 +    * similar limitations to Cochran-Mantel-Haenszel test 
 + 
 +==== Cochran-Mantel_haenszel test ==== 
 + 
 +  * limitations 
 +    * can only adjust for one variable at a time 
 + 
 +looks at two binary categorical variables while adjusting for the value of a third categorical variable 
 + 
 +==== Parametric One-Sample Inference of Categorical Variables==== 
 + 
 +  * one-sample proportion test 
 +    * do NOT use Yate's continuity, so specify: 
 +      * prop.test(..., correct = FALSE) 
 + 
 +  * $\Chi^2$ goodness of fit test 
 +    * to ensure sufficient sample size: $n \cdotp_{0} > 5$ 
 +    * don't use continunity corrections! 
 +      * chisq.test(..., correct = FALSE) 
 + 
 +**NOTE**: //one-sample single proportion test// gives a 95% CI -- $\Chi^2$ does not! 
 + 
 +==== Types of Probabilites === 
 + 
 +[[https://sites.nicholas.duke.edu/statsreview/jmc/ | Joint, Marginal and Conditional Probabilities]]
  
   * QI   * QI
duke_notes.1762806993.txt.gz · Last modified: by admin