This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| resources:checklists:ventilator_rounding [2023/12/22 19:05] – [Foundational Equations] admin | resources:checklists:ventilator_rounding [2023/12/22 19:14] (current) – [Foundational Equations] admin | ||
|---|---|---|---|
| Line 3: | Line 3: | ||
| ==== Foundational Equations ==== | ==== Foundational Equations ==== | ||
| - | ^ Ohm's Law | $\Delta P = FR = P_{aw} - P_{alv} = P_{pl} - PEEP_{total}$ | | + | ^ Ohm's Law |
| - | ^ Equation of Motion | $P_{aw} = FR + \frac{V_{t}}{C} + PEEP_{total}$| | + | ^ Equation of Motion |
| - | ^ Compliance | $C = \frac{\Delta V}{\Delta P}$ | | + | ^ Compliance |
| - | ^ Natural Decay Equation | $V_i(t)= \frac{V_o}{e^{\frac{t}{RC}}} = \frac{V_o}{e^{\frac{t}{\tau}}}$| | + | ^ Natural Decay Equation |
| - | ^ Calculating $\Tau$, General Case | $ \tau = \frac{V_t}{F} \Bigg(\frac{PIP - P_{plt}}{P_{plt} - PEEP_{total}}\Bigg) $ | | + | ^ Calculating $\Tau$, General Case | $ \tau = \frac{V_t}{F} \Bigg(\frac{PIP - P_{plt}}{P_{plt} - PEEP_{total}}\Bigg) |
| + | ^ Alveolar Gas Equation | ||
| - | ^ Patient ^ Mode ^ TV ^ Rate ^ Ppeak ^ Pplat ^ PEEP_auto ^ PEEP_set ^ | + | * [[https:// |
| + | ==== Alveolar Gas Equation==== | ||
| + | $P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ}$ | ||
| + | substituting back in to $RQ$ equation: | ||
| + | $RQ = \frac{P_ACO_2}{\frac{V_AP_ACO_2}{kVO_2}}= \frac{VO_2}{V_a}k$ | ||
| + | $V_T = V_A + V_D$, where $V_A = 350$ and $V_D = 150$ | ||
| + | |||
| + | |||
| + | ==== Dead Space Fraction ==== | ||
| + | $\frac{V_D}{V_T} = \frac{P_ACO_2 - P_ECO_2}{P_ACO_2}$ | ||
| + | |||
| + | Formal measurement of $P_ECO_2$ requires volumetric capnography, | ||
| + | |||
| + | Thankfull, $P_ECO_2 \approx ETCO_2$, so an approimation would $\frac{V_D}{V_T} = \frac{P_ACO_2 - ETCO_2}{P_ACO_2}$ | ||
| + | |||
| + | |||
| + | |||
| + | ==== Alveolar ventilation ==== | ||
| + | $P_{A}O_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_AO2}{RQ}$ | ||
| + | $\dot{V}_A=k\frac{\dot{V}CO_2}{P_ACO_2}$ | ||
| + | $\implies \dot{V}CO2 = \frac{\dot{V}_AP_ACO_2}{k}$ | ||
| + | |||
| + | To convert $F_ACO_2$ into $P_ACO_2$, we have $F_ACO_2(P_{atm} - PH_2O = P_ACO_2$ | ||
| + | Similarly, using $F_ECO_2$, we can show $P_ECO_2 = F_ECO_2(P_{atm} - P_{H_2O})$ | ||
| + | |||
| + | $Volume_{expiredCO2} = Volume_{producedAlvCO2}$ | ||
| + | |||
| + | $V_TF_ECO_2 = V_AF_ACO_2$ | ||
| + | |||
| + | $V_TF_ECO_2 = (V_T - V_D)F_ACO_2$, | ||