This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| resources:formulae [2023/10/03 19:24] – admin | resources:formulae [2025/05/09 09:46] (current) – [CPET Testing] admin | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | [[https:// | ||
| + | |||
| + | ==== Foundational Equations ==== | ||
| + | |||
| + | ^ Ohm's Law | $\Delta P = FR = P_{aw} - P_{alv} = P_{pl} - PEEP_{total}$ | ||
| + | ^ Equation of Motion | ||
| + | ^ Compliance | ||
| + | ^ Natural Decay Equation | ||
| + | ^ Calculating $\Tau$, General Case | $ \tau = \frac{V_t}{F} \Bigg(\frac{PIP - P_{plt}}{P_{plt} - PEEP_{total}}\Bigg) $ | | ||
| + | ^ Alveolar Gas Equation | ||
| + | ^ Mech Power, VC | ${MP}_{VC} = 0.098 \cdot RR \cdot V_t[PIP-\frac{1}{2}(P_{plat}-PEEP)]$ | ||
| + | ^ Mech Power, PC | ${MP}_{VC} = 0.098 \cdot RR \cdot V_t[PEEP + \Delta P_{insp}(1-e^{\frac{-T_{insp}}{RC}})]$ | ||
| + | |||
| + | ===== Respiratory Equations ===== | ||
| + | ==== Mechanical Power ==== | ||
| + | === Volume Control === | ||
| + | ${MP}_{VC} = 0.098 \cdot RR \cdot V_t[PIP-\frac{1}{2}(P_{plat}-PEEP)] \approx \frac{MV(P_{peak}+PEEP+\frac{Q_{insp}}{6})}{20}$ | ||
| + | |||
| + | ===Pressure Control === | ||
| + | ${MP}_{VC} = 0.098 \cdot RR \cdot V_t[PEEP + \Delta P_{insp}(1-\exp(\frac{-T_{insp}}{RC}))]$ | ||
| + | |||
| + | ${MP}_{VC} = 0.098 \cdot RR \cdot V_t[PEEP + \Delta P_{insp}(1-e^{\frac{-T_{insp}}{RC}})] \approx 0.098 \cdot RR \cdot V_t(PEEP + \Delta P_{insp})$ | ||
| + | * [[https:// | ||
| + | |||
| + | ==== Alveolar Gas Equation==== | ||
| + | $P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ}$ | ||
| + | |||
| + | substituting back in to $RQ$ equation: | ||
| + | $RQ = \frac{P_ACO_2}{\frac{V_AP_ACO_2}{kVO_2}}= \frac{VO_2}{V_a}k$ | ||
| + | |||
| + | $V_T = V_A + V_D$, where $V_A = 350$ and $V_D = 150$ | ||
| + | |||
| + | |||
| + | ==== Shunt Equation (Berggren Equation)==== | ||
| + | $$\frac{Q_s}{Q_t} = \frac{C_{C_{O_2}} - C_{a_{O_2}}}{C_{C_{O_2}} - C_{v_{O_2}}}$$ | ||
| + | |||
| + | where: | ||
| + | * $Q_s=$ pulmonary physiology shunt $(\frac{mL}{min})$ | ||
| + | * $Q_t=$ cardiac output $(\frac{mL}{min})$ | ||
| + | * $C_{C_{O_2}} = $ end-pulmonary-capillary oxygen content | ||
| + | * $C_{a_{O_2}} = $ arterial oxygen content | ||
| + | * $C_{v_{O_2}} =$ mixed venous oxygen content | ||
| + | |||
| + | So, you will need an ABG and a true mixed VBG (art line + SGC). | ||
| + | |||
| + | === Derivation === | ||
| + | ==== Dead Space Fraction ==== | ||
| + | $\frac{V_D}{V_T} = \frac{P_ACO_2 - P_ECO_2}{P_ACO_2}$ | ||
| + | |||
| + | Formal measurement of $P_ECO_2$ requires volumetric capnography, | ||
| + | |||
| + | Thankfull, $P_ECO_2 \approx ETCO_2$, so an approimation would $\frac{V_D}{V_T} = \frac{P_ACO_2 - ETCO_2}{P_ACO_2}$ | ||
| + | |||
| + | |||
| + | |||
| + | ==== Alveolar ventilation ==== | ||
| + | $P_{A}O_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_AO2}{RQ}$ | ||
| + | $\dot{V}_A=k\frac{\dot{V}CO_2}{P_ACO_2}$ | ||
| + | $\implies \dot{V}CO2 = \frac{\dot{V}_AP_ACO_2}{k}$ | ||
| + | |||
| + | To convert $F_ACO_2$ into $P_ACO_2$, we have $F_ACO_2(P_{atm} - PH_2O = P_ACO_2$ | ||
| + | Similarly, using $F_ECO_2$, we can show $P_ECO_2 = F_ECO_2(P_{atm} - P_{H_2O})$ | ||
| + | |||
| + | $Volume_{expiredCO2} = Volume_{producedAlvCO2}$ | ||
| + | |||
| + | $V_TF_ECO_2 = V_AF_ACO_2$ | ||
| + | |||
| + | $V_TF_ECO_2 = (V_T - V_D)F_ACO_2$, | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ===== PULM ===== | ||
| + | ==== Equation of Motion ==== | ||
| + | $P_{delivered} = P_{resistive} + P_{elastic}$ | ||
| + | |||
| + | $P_{aw} = \dot VR + \frac{V_t}{C} + PEEP_{total} + P_{musc}$ | ||
| + | |||
| + | ==== CPET Testing==== | ||
| + | |||
| + | ===Heart rate reserve=== | ||
| + | |||
| + | $HRR = HR_{achieved}^{max} - HR_{predicted}^{peak}$, | ||
| + | |||
| + | where $HR_{predicted}^{peak} = 220 - age$ | ||
| + | |||
| + | ===Slope of work efficiency=== | ||
| + | $m(work_e) = \frac{\Delta VO_2}{\Delta WR}$ | ||
| + | |||
| + | ===Slope of heart rate rise=== | ||
| + | $\frac{\Delta HR}{\Delta VO_2}$ | ||
| + | ===== CARDS ===== | ||
| + | $TPG = mPAP - PCWP$ | ||
| + | |||
| $SVR =\frac{MAP-CVP}{CO}\cdot80$ | $SVR =\frac{MAP-CVP}{CO}\cdot80$ | ||
| + | |||
| + | $PVR = \frac{mPAP - PCWP}{CO}\cdot80$ | ||
| $CO = LVOT_{area}\cdot LVOT_{VTI}\cdot HR$ | $CO = LVOT_{area}\cdot LVOT_{VTI}\cdot HR$ | ||
| - | $LVOT_{SVI} | + | ====Swan-Ganz Equations==== |
| + | $CO = \frac{VO_{2}}{C_a - C_v}$, where $C_v = ScvO_2$ (mixed venous oxygen content) | ||