Hepatic Congestion

• Article, VeXus Grading

FREE Exam

Setup

- Enter patient information
- Attach EKG leads
- Select phased array transducer
- Choose ST UMMC 1 Echo preset

Parasternal long axis (PLAX)

- Qualitative EF assessment (CLIP)
- LVOT diameter (SAVE)
- PLAX, during end systole
- Inner edge to inner edge of aortic at base of aortic valve
- Normal 1.8-2.4 (~BSA, can use as surrogate if unable to measure)
- Color doppler over MV and AoV to look for regurgitation (CLIP)

Parasternal short axis (PSAX)

- Qualitative EF assessment at each level
- Level of papillary muscles (CLIP) assess RV as well
- Level of mitral valve (CLIP)
- Level of aortic valve (CLIP)
- Color doppler over tricuspid to check for TR (CLIP)

Apical four chamber (A4C)

- Qualitative assessment of RV and LV size (CLIP)
- Color doppler over MV, LA, and LV (CLIP)
- Mitral inflow E-a (SAVE)
 - $\circ\,$ A4C, mitral valve, PW doppler just inside ventricle
 - \circ Above baseline, measuring flow into the ventricle/towards the probe
 - \circ E = early diastolic filling
 - \circ A = late atrial kick
 - \circ A is just before QRS, E is before A
 - \circ E > A in normal and pseudonormal (super abnormal)
- Mitral annulus TDI (SAVE)
 - $\circ\,$ A4C, mitral valve, lateral annulus, TDI \rightarrow PW
 - $\,\circ\,$ A' is just before QRS, E' is before A'
 - $\circ\,$ E' and E occur at the same time point in the cardiac cycle
 - Normal E/E' >10

- Color doppler over TV (CLIP)
- TR Vmax (SAVE)
 - A4C, CW doppler
 - Can also be done in PSAX, CW doppler, if visible at aortic valve level
 - Only if tricuspid regurgitation is present
 - \circ Surrogate for RVSP/PASP (TR max PG = RVSP + CVP)
- TAPSE (SAVE)
 - A4C, tricuspid valve, lateral annulus, M-mode
 - Estimate visually before measuring
 - $\circ\,$ Measure peak to valley
 - $\circ\,$ RV specific, only free wall, no contribution from septum/LV
 - Normal >1.7

Apical five chamber (A5C)

- Collar doppler over LVOT and AoV (CLIP)
- LVOT VTI (SAVE)
 - A5C, aortic valve, PW doppler where LVOT diameter was measured
 - Quantitative surrogate for stroke volume (SV)
 - $\circ\,$ Trace largest flow away from probe, baseline to baseline
 - Normal 18-24 in euvolemia (approx. 10x BSA)
- Stroke volume variation (SAVE)
 - $\circ\,$ Using doppler saved for LVOT VTI, need at least 10 beats
 - Decrease sweep speed (25-35 mm/sec) to see multiple beats
 - $\,\circ\,$ Measure SV maximum and minimum flow
 - Cannot do in arrhythmia, not validated in low EF
- AoV Vmax
 - A5C, aortic valve, CW doppler
 - If AS, SVV measurement is invalidated
 - \circ Normal <200

Subcostal (SC)

- Evaluate for pericardial effusion (CLIP)
- Oblique view with IVC (CLIP)
- IVC collapsibility (SAVE)
 - SC oblique, M-mode
 - If variability, measure max and min
- Hepatic vein
 - IVC view, PW doppler
 - $\circ\,$ Drains right atrium/IVC, transduces the pressures of the right side
 - Occurs between two QRS complexes
 - S = ventricular systole, actually seeing atrial diastole
 - D = ventricular diastole, actually seeing atrial systole
 - A = atrial kick, causes small reversal in pressure
- Portal vein
 - IVC view, PW doppler
 - $\circ\,$ Normal vein, should have continuous flow

 \circ "Pulsatility" or "to and fro" pattern = volume intolerance

Pulmonary

- Gen Abdomen preset
- 6 locations upper, mid, and lower on left and right (CLIP x6)
- Evaluation for B lines
- Rating (0) = absent, (1 zone) = scattered, (>2 zones) = diffuse

Internal Jugular veins (IJ)

- Linear probe, decrease depth to 5cm
- Measure at HOB 0 degrees and then HOB 90 degrees
- Only need one side

From: https://ewrobbins.com/ - ewrobbins.com

Permanent link: https://ewrobbins.com/doku.php?id=resources:clinical_tools:pocus&rev=1695753201

Last update: 2023/09/26 18:33

