# NCCU * normal EVD output * MELAS * scores for predicting ICH outcomes * ICH score: predicts mortality at 1 month * comprised of GCS, age> 80, ICH vol >30 mL, IVH, infratentorial hemorrhage origin * FUNC score: 90 day function * comprised of ICH volume, age, ICH location, GCS, pre-ICH cognitive impairment * calculating IVH size * Spetzler-Martin grading system for AVMs * digital subtraction angiography * Parinaud syndrome * bicaudate index * SAH grading * Hunt Hess * modified fisher * normal pressure perfusion breakthrough * AVM resection and BP goals * Hydrocephalus ex vacuo vs obstructive hydro nimodipine used for vasospasm ppx for aneurysm-related SAH. Not clear re: AVM. ===== ICU Improvements ===== * vent reporting * limit to ACTIVE, RELEVANT ICU issues * for A/P, ACTIVE ICU problem and status of what's keeping them here * MINIMIZE computer use * especially as you get to know patients * use primarily for DATA reporting (vitals, labs) * chronic issues (only ACTIVE, relevant ICU issues) * e.g., ACI, hypothyroid * "no acute issues" * "vital signs stable" * GFAP ===== To Read ===== * https://doi.org/10.34197/ats-scholar.2020-0019PS * PVAT (pulmonary velocity acceleration time) RC711 .W469 2017, RC776.P87 P854 2004, RC756 .W45 2019 * [[https://xlung.net/en/mv-manual/basic-modes-of-mechanical-ventilation | Vent Waveforms]] ==== Alveolar Gas Equation==== $P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ}$ substituting back in to $RQ$ equation: $RQ = \frac{P_ACO_2}{\frac{V_AP_ACO_2}{kVO_2}}= \frac{VO_2}{V_a}k$ $V_T = V_A + V_D$, where $V_A = 350$ and $V_D = 150$ ==== Dead Space Fraction ==== $\frac{V_D}{V_T} = \frac{P_ACO_2 - P_ECO_2}{P_ACO_2}$ Formal measurement of $P_ECO_2$ requires volumetric capnography, which requires a capable ventilator or a dedicated measurement device. Thankfull, $P_ECO_2 \approx ETCO_2$, so an approimation would $\frac{V_D}{V_T} = \frac{P_ACO_2 - ETCO_2}{P_ACO_2}$ ==== Alveolar ventilation ==== $P_{A}O_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_AO2}{RQ}$ $\dot{V}_A=k\frac{\dot{V}CO_2}{P_ACO_2}$ $\implies \dot{V}CO2 = \frac{\dot{V}_AP_ACO_2}{k}$ To convert $F_ACO_2$ into $P_ACO_2$, we have $F_ACO_2(P_{atm} - PH_2O = P_ACO_2$ Similarly, using $F_ECO_2$, we can show $P_ECO_2 = F_ECO_2(P_{atm} - P_{H_2O})$ $Volume_{expiredCO2} = Volume_{producedAlvCO2}$ $V_TF_ECO_2 = V_AF_ACO_2$ $V_TF_ECO_2 = (V_T - V_D)F_ACO_2$, and we can convert $F_ACO_2$ into $P_ACO_2$