# NCCU
* normal EVD output
* MELAS
* scores for predicting ICH outcomes
* ICH score: predicts mortality at 1 month
* comprised of GCS, age> 80, ICH vol >30 mL, IVH, infratentorial hemorrhage origin
* FUNC score: 90 day function
* comprised of ICH volume, age, ICH location, GCS, pre-ICH cognitive impairment
* calculating IVH size
* Spetzler-Martin grading system for AVMs
* digital subtraction angiography
* Parinaud syndrome
* bicaudate index
* SAH grading
* Hunt Hess
* modified fisher
* normal pressure perfusion breakthrough
* AVM resection and BP goals
* Hydrocephalus ex vacuo vs obstructive hydro
nimodipine used for vasospasm ppx for aneurysm-related SAH. Not clear re: AVM.
===== ICU Improvements =====
* vent reporting
* limit to ACTIVE, RELEVANT ICU issues
* for A/P, ACTIVE ICU problem and status of what's keeping them here
* MINIMIZE computer use
* especially as you get to know patients
* use primarily for DATA reporting (vitals, labs)
* chronic issues (only ACTIVE, relevant ICU issues)
* e.g., ACI, hypothyroid
* "no acute issues"
* "vital signs stable"
* GFAP
===== To Read =====
* https://doi.org/10.34197/ats-scholar.2020-0019PS
* PVAT (pulmonary velocity acceleration time)
RC711 .W469 2017, RC776.P87 P854 2004, RC756 .W45 2019
* [[https://xlung.net/en/mv-manual/basic-modes-of-mechanical-ventilation | Vent Waveforms]]
==== Alveolar Gas Equation====
$P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ}$
substituting back in to $RQ$ equation:
$RQ = \frac{P_ACO_2}{\frac{V_AP_ACO_2}{kVO_2}}= \frac{VO_2}{V_a}k$
$V_T = V_A + V_D$, where $V_A = 350$ and $V_D = 150$
==== Dead Space Fraction ====
$\frac{V_D}{V_T} = \frac{P_ACO_2 - P_ECO_2}{P_ACO_2}$
Formal measurement of $P_ECO_2$ requires volumetric capnography, which requires a capable ventilator or a dedicated measurement device.
Thankfull, $P_ECO_2 \approx ETCO_2$, so an approimation would $\frac{V_D}{V_T} = \frac{P_ACO_2 - ETCO_2}{P_ACO_2}$
==== Alveolar ventilation ====
$P_{A}O_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_AO2}{RQ}$
$\dot{V}_A=k\frac{\dot{V}CO_2}{P_ACO_2}$
$\implies \dot{V}CO2 = \frac{\dot{V}_AP_ACO_2}{k}$
To convert $F_ACO_2$ into $P_ACO_2$, we have $F_ACO_2(P_{atm} - PH_2O = P_ACO_2$
Similarly, using $F_ECO_2$, we can show $P_ECO_2 = F_ECO_2(P_{atm} - P_{H_2O})$
$Volume_{expiredCO2} = Volume_{producedAlvCO2}$
$V_TF_ECO_2 = V_AF_ACO_2$
$V_TF_ECO_2 = (V_T - V_D)F_ACO_2$, and we can convert $F_ACO_2$ into $P_ACO_2$