[[https://anesthesia.ucsf.edu/sites/anesthesia.ucsf.edu/files/wysiwyg/Ventilator_Pocket_Guide_2020.pdf | Ventilator Pocket Guide]] ==== Foundational Equations ==== ^ Ohm's Law | $\Delta P = FR = P_{aw} - P_{alv} = P_{pl} - PEEP_{total}$ | ^ Equation of Motion | $P_{aw} = FR + \frac{V_{t}}{C} + PEEP_{total}$ | ^ Compliance | $C = \frac{\Delta V}{\Delta P}$ | ^ Natural Decay Equation | $V_i(t)= \frac{V_o}{e^{\frac{t}{RC}}} = \frac{V_o}{e^{\frac{t}{\tau}}}$ | ^ Calculating $\Tau$, General Case | $ \tau = \frac{V_t}{F} \Bigg(\frac{PIP - P_{plt}}{P_{plt} - PEEP_{total}}\Bigg) $ | ^ Alveolar Gas Equation | $P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ} $, where $RQ = 0.80$ | * [[https://xlung.net/en/mv-manual/basic-modes-of-mechanical-ventilation | Vent Waveforms]] ==== Alveolar Gas Equation==== $P_AO_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_aCO_2}{RQ}$ substituting back in to $RQ$ equation: $RQ = \frac{P_ACO_2}{\frac{V_AP_ACO_2}{kVO_2}}= \frac{VO_2}{V_a}k$ $V_T = V_A + V_D$, where $V_A = 350$ and $V_D = 150$ ==== Dead Space Fraction ==== $\frac{V_D}{V_T} = \frac{P_ACO_2 - P_ECO_2}{P_ACO_2}$ Formal measurement of $P_ECO_2$ requires volumetric capnography, which requires a capable ventilator or a dedicated measurement device. Thankfull, $P_ECO_2 \approx ETCO_2$, so an approimation would $\frac{V_D}{V_T} = \frac{P_ACO_2 - ETCO_2}{P_ACO_2}$ ==== Alveolar ventilation ==== $P_{A}O_2 = F_iO_2(P_{atm}-P_{H_2O}) - \frac{P_AO2}{RQ}$ $\dot{V}_A=k\frac{\dot{V}CO_2}{P_ACO_2}$ $\implies \dot{V}CO2 = \frac{\dot{V}_AP_ACO_2}{k}$ To convert $F_ACO_2$ into $P_ACO_2$, we have $F_ACO_2(P_{atm} - PH_2O = P_ACO_2$ Similarly, using $F_ECO_2$, we can show $P_ECO_2 = F_ECO_2(P_{atm} - P_{H_2O})$ $Volume_{expiredCO2} = Volume_{producedAlvCO2}$ $V_TF_ECO_2 = V_AF_ACO_2$ $V_TF_ECO_2 = (V_T - V_D)F_ACO_2$, and we can convert $F_ACO_2$ into $P_ACO_2$